Biological Time, Fitness Landscapes, Control Parameters of Aging, and their Effects on Health and Disease

Brian J. Fertig
Department of Diabetes & Endocrinology, JFK Medical Center, Piscataway, NJ 08854

Synchronized energy production in the human body is described by quantum metabolism involving coherent endogenous clock-controlled gene outputs. This is linked to aging and disease by integration with the concepts of time/cycles, stress response and diet/microbiota as control parameters that mediate disease. They crucially initiate pathology via molecular mechanisms that drive inflammation and oxidative modifications. Each control parameter perturbs the others in a vicious cycle of cause-effect amplification. Importantly, disturbances in these 3 parameters accelerate the pace of aging as a function of impaired metabolic rate and efficiency, and the inextricably entangled compromise of redox and free energy homeostasis. Prolonged stress response alters circadian timing, diet, and microbiota and is nonlinearly compounded to the detriment of health. The neuroendocrine and autonomic nervous systems mediate allostasis but if prolonged, cause allostatic overload that disturbs homeostasis. For simplicity, we propose the concept of fitness landscape where control parameters are represented as horizontal axes and the vertical axis maps the fitness function measured in response to them. Valleys in the stress response plots correspond to stability regions but peaks and ridges delineate boundaries. These areas refer to optimal health, a pre-diabetic state, and advanced disease. Almost all chronic diseases of aging share the same control parameters, hence a common framework should be developed instead of a fragmented approach. Three critical aspects on the periphery of modern medical interventions: chronophysiology, microbiota and prolonged stress, are entering the mainstream of medical research thanks to advances in understanding how they affect our health. Their inclusion within the fitness landscape methodology consistent with special relativity offers a practical approach to optimal solutions for healthy aging and precision-medicine therapies for age-related diseases.